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Decentralized moving horizon estimation for
large-scale networks of interconnected

unconstrained linear systems
Leonardo Pedroso and Pedro Batista, Senior Member, IEEE

Abstract— This paper addresses the problem of design-

ing a decentralized state estimation solution for a large-

scale network of interconnected unconstrained linear time

invariant (LTI) systems. The problem is tackled in a novel

moving horizon estimation (MHE) framework, while taking

into account the limited communication capabilities and

the restricted computational power and memory, which are

distributed across the network. The proposed design is

motivated by the fact that, in a decentralized setting, a

Luenberguer-based framework is unable to leverage the full

potential of the available local information. A method is

derived to solve a relaxed version of the resulting optimiza-

tion problem. It can be synthesized offline and its stability

can be assessed prior to deployment. It is shown that the

proposed approach allows for significant improvement on

the performance of recent Luenberger-based filters. Fur-

thermore, we show that a state-of-the-art distributed MHE

solution with comparable requirements underperforms in

comparison to the proposed solution.

Index Terms— Decision/Estimation Theory, Moving Hori-

zon Estimation, Distributed Algorithms/Control, Networked

Control Systems, Networks of Autonomous Agents

I. INTRODUCTION

Over the past decades, decentralized estimation and control
have been highly researched topics since they provide a
solution to the estimation and control problems of large-scale
networks of interconnected systems. In fact, they emerge as
an alternative to the use of well-known centralized solutions,
which become unfeasible to implement as the dimension of the
network increases. The popularity of decentralized solutions
is also increasing with the widening of its applications to a
broad range of engineering fields in which networks of inter-
connected systems arise. Examples of such applications are
unmanned aircraft formation flight [1], unmanned underwater
formations [2], satellite constellations [3], automated highway
control [4], irrigation networks [5], industrial processes [6],
and various physical models whose underlying principles are
modeled by partial differential equations [7].

Although plenty of work has been carried out in decen-
tralized estimation and control of linear time-invariant (LTI)
systems, the problem of designing such controllers, which con-
sists in solving an optimization problem subject to a constraint
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that arises from the distributed nature of the configuration,
is intractable [8] and remains an open problem. In fact, the
optimal solution for a linear system with Gaussian noise may
be nonlinear [9]. Furthermore, it has been shown that the
solution of a decentralized design control problem is the result
of a convex optimization problem, and thus tractable, if and
only if quadratic invariance of the controller set is ensured
[10], [11].

This problem has already been addressed, in a classical
Luenberger observer framework, making use of four distinct
approaches: i) minimum variance of the steady-state global
estimation error, modeling the process and observation noise as
Gaussian distributions, which degenerates into a decentralized
Kalman filter [12], [13]; ii) minimum H2 norm of the global
system [14]–[16]; iii) particular results for systems which
verify the aforementioned quadratic invariance condition [17];
and iv) for particular coupling topologies [18]. In this work,
the estimation problem of a large-scale network of intercon-
nected actuation capable LTI systems with non-overlapping
states is considered. The case for which all states overlap
degenerates into a large-scale network of sensors and the
goal becomes to collaboratively estimate the global state.
This is also known as the consensus estimation problem,
which has been studied extensively for large-scale networks
[19]–[21]. Furthermore, the case for which there is partial
state overlapping has been addressed in [22], making use of
consensus arguments.

One limitation of the classical Luenberger observer frame-
work, for both centralized and decentralized estimation so-
lutions, is that it does not take advantage of known bounds
on noise and state variables. This degrades the estimation
performance and can even lead to the instability of the filter
[23]. The moving horizon estimation (MHE) framework was
originally introduced to address this matter [24], [25], but has
evolved to deal with nonlinear dynamics [26] and outputs [27]
as well. It amounts to solving, at each time instant, an opti-
mization problem that takes into account the measurement data
of a window of past time instants subject to known bounds.
Several distributed MHE approaches have been proposed to
exploit known bounds on networks of interconnected linear
systems [28]–[32] and validated in impactful applications, e.g.,
urban road networks [33] and cascade river reaches [34].
In particular, Farina et al. [28] proposed three promising
distributed MHE methods for large-scale LTI systems with
convergence guarantees. One of those, designated PMHE1
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method, only requires local communication between systems,
at the expense of disregarding uncertainty associated with
the dynamic couplings between systems. However, it does
not support correlated process noise between systems with
dynamic couplings.

On one hand, decentralized approaches based on the clas-
sical Luenberger framework can, generally, be synthesized
offline and require communication of filtered state estimates
between systems with dynamic couplings exclusively, once per
iteration of the discrete-time filter implementation. This de-
centralized design has, for this reason, low memory, computa-
tional load, and communication requirements, allowing for an
easy implementation to real large-scale systems. On the other
hand, distributed approaches based on the MHE framework
are able to exploit known bounds at the expense of demanding
computations to solve local finite-horizon optimization prob-
lems and broadcasting estimation error covariance matrices in
real-time for the whole MHE window. Thus, even though the
methods based on a MHE framework are, in principle, able
to exceed those based on a Luenberger observer formulation
in terms of estimation performance, it comes with an increase
in computational, memory, or communication requirements,
which makes the application to the vast majority of real
systems infeasible.

In this paper, we propose a decentralized state estimation
solution for a large-scale network of interconnected uncon-
strained LTI systems with non-overlapping states subject to
unbounded Gaussian process noise with access to local sensing
outputs subject to unbounded Gaussian sensor noise. The
novelty of the proposed method is that it is based on a MHE
framework, even though no bounds are considered neither
for the state variables nor for process or sensor noise. It is
shown that it is possible to achieve a significant estimation
performance improvement in relation to decentralized methods
based on the classical Luenberger framework with manageable
computational, memory, and communication requirements.
Furthermore, we show that a state-of-the-art distributed MHE
solution with comparable requirements underperforms in com-
parison with the solution presented herein.

The motivation for taking this approach is not clear at
first sight. It is true that, for an unconstrained system, in
a centralized scheme the Luenberger and MHE framework
yield the same optimal estimation performance. This is due
to the well-known fact that the Kalman filter is the optimal
solution to the state estimation problem and that it can be
written recursively in the form of a Luenberguer observer
[35]. Thus, it is pointless to follow a MHE approach for
unconstrained systems in a centralized setting. However, in
a decentralized setting that is not the case. The formulation of
the decentralized problem as a classical Luenberger observer,
for which every newly computed estimate is computed making
use of the previous filtered estimate and the newly obtained
sensor measurement, comes with a significant decrease of
performance. This performance loss is due to the fact that, for
decentralized configurations, the optimization of the quality
of the estimate of a given instant compromises the quality
of future time instants. Thus, besides the obvious loss of
performance associated with the decentralized design, there

is also the loss associated with this effect, whose origin is
detailed more thoroughly in Section II-B. As a means of
mitigating the latter form of loss of performance, we consider
a MHE framework.

The novel MHE framework for decentralized filter design
for large-scale networks of interconnected LTI systems put for-
ward in this paper is developed in discrete-time. It is built on
multiple prediction-filtering steps employed in a Luenberger
Kalman filter for each individual system, which ensures the
consistency of the filter. The problem is formulated in a first
instance for the global system, with a sparsity constraint on
the filter gain. Such sparsity constraint imposes certain entries
of the global gain matrix to be null, following a structure
that reflects the communication restrictions in the network,
necessary for the implementation of the decentralized state
filters. The optimization problem that arises in the problem for-
mulation is nonconvex. Hence, the algorithm that is proposed
herein, designated moving finite-horizon (MFH) method, relies
on conveniently defined convex relaxations of the original
optimization problem to achieve a computationally efficient
approximation to its solution. The MFH filter synthesis can
(and should) be carried out offline in a computing server,
which avoids intensive real-time computations. The local de-
centralized filters gains can then be extracted from the globally
synthesized sparse gain matrix, allowing for its decentralized
implementation, leveraging local communication exclusively.
Herein, we designate this framework as decentralized, as
opposed to distributed, given that it is formulated globally,
synthesized offline, and deployed afterwards in each system
resorting to local communication. It contrasts with general
MHE schemes, which rely on the numerical solution of an
optimization problem solved distributively across the network
in real-time.

The computational, memory, and communication require-
ments of the MFH method are comparable with those of a
decentralized Luenberger observer formulation:

1) The local measurement of each system is exclusively
available for filter computations in that system;

2) Each system has one computational unit associated with
it. The computational load of the estimation algorithm
of the network is distributed across all computational
units in such a way that each carries out computations
concerning its own state estimate exclusively, which
circumvents the curse of dimensionality;

3) Each computational unit only has to store a time window
of parameters concerning its own state estimate;

4) The communication links between systems are restricted
to pairs of systems which are dynamically coupled.

Furthermore, the stability of the error dynamics of the pro-
posed MFH filter can be assessed after its offline synthesis
and prior to deployment. Finally, the framework and pro-
posed algorithm are validated resorting to numerical simu-
lations. The performance of the MFH method is compared
with several methods based on the classical Luenberger ob-
server formulation and with a distributed MHE solution with
comparable requirements. A MATLAB implementation of
the MFH algorithm and of the simulations can be found
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in the DECENTER toolbox at https://decenter2021.github.io.
The documentation of the MFH method implementation
is available at https://decenter2021.github.io/documentation/M
HEMovingFiniteHorizonLTI and extensive simulation results
at https://decenter2021.github.io/examples/MHEMFH.

This paper is organized as follows. In Section II, the
estimation problem is formulated, the assumptions that are
considered are introduced, and the properties and requirements
of the decentralized design are evaluated. In Section III, the
MFH method is derived. In Section IV, the application of the
MFH method to two large-scale networks of interconnected
systems is simulated and its performance is compared with
other state-of-the-art methods. Finally, some concluding re-
marks are provided in Section V.

A. Notation

Throughout this paper, the identity, null, and ones matrices,
all of proper dimensions, are denoted by I, 0, and 1, respec-
tively. Alternatively, In, 0n⇥m, and 1n⇥n are also used to
represent the n ⇥ n identity matrix, the n ⇥ m null matrix,
and the n⇥m ones matrix, respectively. The i-th component
of a vector v 2 Rn is denoted by [v]i. The entry (i, j) of a
matrix A is denoted by [A]ij . The vectorization of a matrix A,
denoted herein by vec(A), returns a vector composed of the
concatenated columns of A. The column-wise concatenation
of vectors x1, . . . ,xN is denoted by col(x1, . . . ,xN ) and
diag(A1, ...,AN ) denotes the square block diagonal matrix
whose diagonal blocks are given by matrices A1, ...,AN . The
product of matrices AN . . .A1 is denoted by

QN
i=1 Ai. Given

a symmetric matrix P, P � 0 and P ⌫ 0 are used to
point out that P is positive definite and positive semidefinite,
respectively. The Kronecker product of two matrices A and
B is denoted by A⌦B.

II. PROBLEM STATEMENT

The statement of the MHE framework for decentralized
filter design for large-scale networks of interconnected systems
employed in this paper is carried out in three steps. First,
in Section II-A, a global model of a generic network of
interconnected systems is presented, built on the concatena-
tion of the dynamics of each individual system. Second, in
Section II-B, the decentralized MHE problem is formulated
for the global model, i.e. for the network as a whole, and the
novel formulation put forward in this paper is compared with
the state-of-the-art formulations, mainly regarding the origin of
the performance improvement. Moreover, the nonconvex filter
design optimization problem is stated, which is posteriorly
relaxed in Section III to devise the MFH method. Third, in
Section II-C, the novel framework is analyzed as far as com-
munication and computational requirements are concerned. A
flowchart of the decentralized implementation is also included.

A. Model of a network of interconnected systems

Consider a network of N interconnected systems, Si, each
associated with one computing unit Ti, with i = 1, . . . , N .
The topology of the network, which is assumed to be time

invariant, is defined by the dynamic couplings between sys-
tems. Such dynamic coupling topology may be represented by
a directed graph, or digraph, G := (V, E), composed of a set
V of vertices and a set E of directed edges. An edge e incident
on vertices i and j, directed from j towards i, is denoted by
e = (j, i). For a vertex i, its in-degree, ⌫�i , is the number of
edges directed towards it, and its in-neighborhood, D�

i , is the
set of indices of the vertices from which such edges originate.
Conversely, for a vertex i, its out-degree, ⌫+i , is the number
of edges directed from it, and its out-neighborhood, D+

i , is
the set of indices of the vertices towards which such edges
are directed. For a more detailed overview of the elements
of graph theory used to model this network, see [36]. In
this framework, each system is represented by a vertex, i.e.
system Si is represented by node i, and if the dynamics of Si

depend on the dynamics of system Sj , then this coupling is
represented by an edge directed from vertex j towards vertex i,
i.e. edge e = (j, i). The case for which there is a measurement
coupling, instead of (or in addition to) a dynamic coupling, is
modeled similarly. In fact, the MHE framework for this case
is analogous to the one put forward in this paper and, thus, it
can be extended to accommodate it.

The dynamics of system Si are modeled by the following
discrete-time LTI system
8
><

>:

xi(k + 1) = Ai,ixi(k) +Bi,iui(k)+P
j2D�

i
(Ai,jxj(k) +Bi,juj(k)) +wi,D�

i
(k)

yi(k) = Cixi(k) + vi(k)

, (1)

where xi(k) 2 Rni is the state vector, ui(t) 2 Rmi is the
input vector, which is assumed to be known, and yi(t) 2 Roi

is the output vector, all of system Si; matrices Ai,j 2 Rni⇥nj ,
Bi,j 2 Rni⇥mj , and Ci 2 Roi⇥ni are known constant
matrices that model the dynamics of system Si and its coupling
with the other systems in its in-neighborhood; vectors vi(k) 2
Roi and wi,D�

i
(k) 2 Rni are the observation and process

noise, modeled as zero-mean white Gaussian processes. The
global dynamics of the network are, then, modeled by the
following discrete-time LTI system

(
x(k + 1) = Ax(k) +Bu(k) +w(k)

y(k) = Cx(k) + v(k)
, (2)

where x(k) := col(x1(k), . . . ,xN (k)) 2 Rn is the global
state vector, u(k) := col(u1(k), . . . ,uN (k)) 2 Rm is the
global input vector, and y(k) := col(y1(k), . . . ,yN (k)) 2
Ro is the global output vector; vector v(k) :=
col(v1(k), . . . ,vN (k)) is the global observation noise;
w(k) := col(w1,D�

1
(k), . . . ,wN,D�

N
(k)) is the global process

noise. Matrices A, B and C are time invariant matrices of
proper dimensions that model the global dynamics. Similarly,
Q and R are covariance block matrices that model the
zero-mean white Gaussian global process and sensor noise,
respectively. For more details on the definition of these
global matrices, see [37, Section 2.1]. Note that some of
the block entries of matrices Q,A, and B may be null due
of the nonexistence of dynamic couplings between every
pair of systems. However, it is important to stress that no
assumption was made regarding either the sparsity or the

https://decenter2021.github.io
https://decenter2021.github.io/documentation/MHEMovingFiniteHorizonLTI/
https://decenter2021.github.io/documentation/MHEMovingFiniteHorizonLTI/
https://decenter2021.github.io/examples/MHEMFH/
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structure of matrices Q,A, and B, as it is imposed for
some state-of-the-art MHE formulations. It is considered that
the initial network state estimate, x̂(0), is a random vector
described by a Gaussian distribution with expected value
x(0) and covariance P0 ⌫ 0 2 Rn⇥n.

B. Decentralized MHE formulation

Exploiting the intricacies of the decentralized estimation
problem, the framework proposed herein allows for significant
performance improvement in comparison with the state-of-the-
art formulation of decentralized recursive filters. To compre-
hend the conception and the advantages of using the proposed
MHE formulation, it is important to stress a significant distinc-
tion between the centralized and decentralized formulations
of the estimation problem. On one hand, the solution to the
centralized estimation problem,

minimize
K(i)2Rn⇥o

i2N

lim
T!1

1

T

TX

k=1

tr(P(k|k)) (3)

is equivalent to the solution to an infinite number of indepen-
dent optimization problems [35]

minimize
K(k)2Rn⇥o

tr(P(k|k))

for k 2 N, where P(k|k) is the estimation error covariance
matrix and K(k) the gain of the Luenberger formulation of
the Kalman filter. In other words, for a given time instant
k, the corresponding estimate can be obtained using a gain
designed to achieve the minimum tr(P(k|k)) possible without
compromising the performance of the estimate at the following
time instants. This result is, by no means, evident, but it is
of great significance and convenience, since it originates a
recursive linear filter for the centralized solution. On the other
hand, this property is not satisfied in a decentralized setting.
Take, as an example, the one-step and finite-horizon methods
presented and compared in [12]. The one-step method, which
minimizes tr(P(k|k)) independently for each time instant,
underperforms in comparison with the finite-horizon method,
which minimizes the sum of the trace of the estimation error
covariance over a finite window. For this reason, it is the case
that, for decentralized configurations, it is not possible, using
a Luenberger formulation, to make use of all the potential of
the available information for the computation of each state
estimate, since it compromises the performance of future time
steps.

The novel MHE framework proposed in this paper aims to
compute a state estimate for each time instant resorting to a
past window of measurements and local communication that
satisfies the aforementioned guidelines. The scheme that is
proposed is achieved by employing, at each time instant, the
prediction-filtering steps of a Luenberger filter to that window
of past instants, taking solely into consideration the estima-
tion performance at the end of the window. This framework
allows to leverage and extend state-of-the-art convex relaxation
techniques [12]. Consider the following augmented notation to
ease the characterization of the prediction-filtering recurrence
that occurs at each time instant k. Let x̂i(⌧+1|⌧ |k) denote the

local predicted state estimate at time instant ⌧+1 as computed
at time instant k and x̂i(⌧ |⌧ |k) denote the local filtered state
estimate at time instant ⌧ as computed at time instant k, both
for system Si. For each time instant k, consider the finite
window {k�W+1, . . . , k}, where W 2 N is the finite window
length. For the system Si, an iteration of the proposed filter
for time instant k follows
8
>>>>>>>><

>>>>>>>>:

x̂i(k�W |k�W |k) = x̂i(k�W |k�W |k�W )

u i,D�
i
(⌧�1) = Bi,iui(⌧�1)+

P
j2D�

i
Bi,juj(⌧�1)

x̂i(⌧ |⌧�1|k) = Ai,ix̂i(⌧�1|⌧�1|k)+
P

j2D�
i
(Ai,j x̂j(⌧�1|⌧�1|k)) + ui,D�

i
(⌧ � 1)

x̂i(⌧ |⌧ |k) = x̂i(⌧ |⌧ � 1|k)+
Ki(⌧ |k) (yi(⌧)�Cx̂i(⌧ |⌧ � 1|k)) ,

(4)

where Ki(⌧ |k) 2 Rni⇥oi denotes the filter gain for time
instant ⌧ computed at time instant k. The various predicted
state estimates depend on the state estimates of the systems in
the in-neighborhood of Si, x̂j(⌧�1|⌧�1|k) with ⌧ = k�W+
1, . . . , k, which have to be received via a communication link
W times each iteration. Moreover, ui,D�

i
(k� 1) is computed

at the beginning of each iteration, meaning that Ti must
receive uj(k � 1) with j 2 D�

i once each iteration. Thus,
ui,D�

i
(⌧ �1), ⌧ = k�W +1, . . . , k, has to be stored, as well

as x̂i(⌧�1|⌧�1|k), ⌧ = k�W, . . . , k� 1. The filtering steps
depend exclusively on sensor readings of system Si, yi(⌧)
with ⌧ = k � W + 1, . . . , k, which have also to be stored.
Note that, because the system is linear and the proposed MHE
filter dynamics (4) are based on linear prediction-filtering
steps, the conditional probability density functions of the state
remain Gaussian and are fully characterized by their mean
and covariance. Thus, the proposed filter is consistent, i.e, it
is zero-mean and the computed estimation error covariance is
not over-confident [38]. Fig. 1 shows the communication and
storage requirements for an arbitrary node i of an illustrative
network with string configuration for the recurrence carried

...

...
...
...

 

Fig. 1: Communication and storage requirements for an
arbitrary computational unit Ti with string configuration. The
solid arrows represent a communication link and the dashed
arrows represent dynamic interaction.
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out at time instant k.
The prediction-filtering steps of a single iteration of the

Luenberger formulation of a Kalman filter can also be written
for the global system, which yields
8
><

>:

x̂(k�W |k�W |k) = x̂(k�W |k�W |k�W )

x̂(⌧ |⌧�1|k) = Ax̂(⌧�1|⌧�1|k) +Bu(⌧�1)

x̂(⌧ |⌧ |k)= x̂(⌧ |⌧�1|k)+K(⌧ |k)(y(⌧)�Cx̂(⌧ |⌧�1|k)),
(5)

where x̂(⌧ |⌧�1|k) := col(x̂1(⌧ |⌧�1|k), . . . , x̂N (⌧ |⌧�1|k)),
x̂(⌧ |⌧ |k) := col(x̂1(⌧ |⌧ |k), . . . , x̂N (⌧ |⌧ |k)), and K(⌧ |k) 2
Rn⇥o is the global filter gain for time instant ⌧ computed at
time instant k, with ⌧ = k �W + 1, . . . , k. Note that writing
the multiple local state filters (4) together for the global system
dynamics leads to a global gain of the form

K(⌧ |k) = diag(K1(⌧ |k), . . . ,KN (⌧ |k)) , (6)

which means that the global gain is subject to a specific con-
straint. Such constraint falls in a broader category designated
by sparsity constraints. Let matrix E 2 Rn⇥o denote a sparsity
pattern. The set of matrices which obey the sparsity constraint
determined by E is defined as

Sparse(E) := {[K]ij 2 Rn⇥o : [Eij ] = 0 =)
[K]ij = 0; i = 1, ..., n, j = 1, ..., o}.

Thus, it follows from (6) that K(⌧ |k) 2 Sparse(E), with
E = diag(1n1⇥o1 , . . . ,1nN⇥oN ). The MHE filter derived
in this paper is designed to solve an optimization problem
for the network as a whole, subject to an arbitrary time
invariant sparsity constraint on the global filter gain and
limited communication links between systems.

Let P(⌧ + 1|⌧ |k) denote the global predicted estimation
error covariance matrix at time instant ⌧ + 1 as computed
at time instant k and P(⌧ |⌧ |k) denote the global global
filtered estimation error covariance matrix at time instant ⌧ as
computed at time instant k. The dynamics of the estimation
error covariance matrix follow from (5), as given by
8
>>><

>>>:

P(k �W |k �W |k) = P(k �W |k �W |k �W )

P(⌧ |⌧ � 1|k) = AP(⌧ � 1|⌧ � 1|k)AT +Q

P(⌧ |⌧ |k) = K(⌧ |k)RKT (⌧ |k)+
(I�K(⌧ |k)C)P(⌧ |⌧ � 1|k)(I�K(⌧ |k)C)T

, (7)

with ⌧ = k �W + 1, . . . , k, which is a recursive expression
of prediction-filtering estimation error covariance steps of
the Luenberger Kalman filter. The estimation problem in
the MHE framework is analogous to (3). Furthermore, the
aforementioned sparsity constrain (6) allows to formulate
the decentralized problem globally explicitly considering the
communication restrictions associated with the decentralized
setting. For an infinite-horizon and a known and time invariant
sparsity pattern E, solve the optimization problem

minimize
K(⌧ |i)2Rn⇥o

i2N ,⌧2{i�W+1,...,i}

lim
T!1

1

T

TX

k=1

tr(P(k|k|k))

subject to K(⌧ |i)2Sparse(E), i2N,
⌧ 2{i�W+1, . . . , i} and (7).

(8)

Remark 2.1: Note that, for each time step k, a sequence
of gains is computed, instead of a single gain. This way,
the current state estimate is dependent on the estimate of
time instant k � W , instead of the previous state estimate.
It is important to stress that, for each time instant k, we
are exclusively concerned in minimizing the trace of the first
computation of the estimation error covariance, i.e. P(k|k|k).
It is the only relevant estimation error covariance, since it is the
only one that is obtained in real-time and whose state estimate
may be used in a feedback control law. In the computation
of each state estimate x̂(k|k|k) using (4), the state estimates
that are computed in this recursion for the prior time instants,
x̂(⌧ |⌧ |k) with ⌧ = k �W + 1, . . . , k � 1, may be as poor an
estimate as necessary, as long as it allows for the best possible
estimate x̂(k|k|k). This is the reason for the performance
improvement in comparison with the Luenberger formulation,
since the previous state estimates do not compromise the
quality of future estimates.

Remark 2.2: The MHE formulation arises from the ne-
cessity of making use of the full potential of the sensor
information that has been received. In that sense, ideally,
selecting a variable window size W = k would yield the
best performance possible, since all the sensor information
up to time instant k would be taken into account. It is
evident that it is unfeasible to make W ! 1 as k ! 1,
due to the increasing computational load and communication
requirements as W becomes large. Furthermore, the sensor
information prior to time instant k�W+1 is used to compute
x̂(k �W |k �W |k �W ) and P(k �W |k �W |k �W ) and
as the sensor information received gets older it becomes less
relevant to the estimate of the current state. For this reason, a
large enough steady-state constant window length Wss, which
offers a compromise between performance and computational
load, is considered.

Notwithstanding, the goal of this paper is to seek a steady-
state solution to (8), i.e. to find a constant sequence of global
gains K1(⌧), ⌧ = 1, ...,Wss, instead of a single constant
gain. If such sequence stabilizes the error dynamics of the
filter (4), then the estimation error covariance converges to a
steady-state solution P1 2 Rn⇥n. The steady-state equivalent
of the optimization problem (8) is then written as

minimize
K1(⌧)2Rn⇥o,
⌧=1,...,Wss

tr(P1)

subject to K1(⌧) 2 Sparse(E) , ⌧ = 1, ...,Wss

and (7)

(9)

and the local filter dynamics as
8
>>>>>>>><

>>>>>>>>:

x̂i(k�Wss|k�Wss|k)= x̂i(k�Wss|k�Wss|k�Wss)

ui,D�
i
(⌧�1) = Bi,iui(⌧�1) +

P
j2D�

i
Bi,juj(⌧�1)

x̂i(⌧ |⌧�1|k) = Ai,ix̂i(⌧�1|⌧�1|k)+
P

j2D�
i
(Ai,j x̂j(⌧�1|⌧�1|k)) + ui,D�

i
(⌧�1)

x̂i(⌧ |⌧ |k) = x̂i(⌧ |⌧ � 1|k)+
K1i(⌧ � k +Wss) (yi(⌧)�Cx̂i(⌧ |⌧ � 1|k)) ,

(10)

where

K1(⌧) = diag(K11(⌧), . . . ,K1N (⌧)) , (11)
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with ⌧ = k�Wss+1, . . . , k. In the next section, the MFH
method is put forward to design a steady-state sequence
of global gains K1(⌧), ⌧ = k � Wss + 1, . . . , k. After
the proposed offline synthesis, the local decentralized gains
K1i(⌧), ⌧ = k �Wss + 1, . . . , k of the local filter dynamics
(10) are extracted from the globally synthesized sparse gain
matrix according to (11). Therefore, the proposed estimation
solution can be deployed in the network, according to the
local filter dynamics (10), leveraging local communication
exclusively.

Thus, for a given constant sequence of global gains K1(⌧),
⌧ = 1, ...,Wss, the decentralized filter (10) is stable ifQWss

⌧=1 ((I�K1(⌧)C)A) is Shur. As a result, a sequence
of gains can be synthesized offline using, for instance, the
MFH method proposed in this paper, and its stability can be
easily verified using this criterion before it is deployed over
the network.

C. Communication and computational requirements

The novel discrete-time MHE framework for decentralized
filter design for large-scale networks of interconnected LTI
systems is given as a solution to the optimization problem (9),
whose local filter dynamics follow (10). Before setting out to
solve the actual optimization problem, it is important to stress
the properties of this novel formulation as far as computational
power and communication requirements are concerned.

First, note that each computational unit Ti associated with
system Si has to compute (10) every new iteration of the esti-
mation algorithm. It consists of Wss Kalman filter prediction-
filtering steps for the dynamics of Si, which is of reduced
dimension no matter the size of the network. For this reason,
the computational load on Ti is low, independently of the scale
of the network, since the load of the global estimation algo-
rithm is distributed across all computational units and carried
out in a parallel manner. Second, note that the optimization
problem (9) can be solved offline, requiring that the model
of the network dynamics is known beforehand. Although the
time required to find its solution increases with N , because it
is formulated for the network as a whole, it can be run offline
in a computing server. Once the constant sequence of global
gains K1(⌧), ⌧ = 1, ...,Wss, is found, the local sequence
of gains, according to (11), are available. Hence, they can be
uploaded to each of the computational units. Third, besides
the system dynamics matrices and local sequence of gains,
each computational unit is only required to store in memory
ui,D�

i
(⌧ � 1), ⌧ = k�Wss +1, . . . , k, x̂i(⌧�1|⌧�1|k), ⌧ =

k � Wss, . . . , k � 1, and yi(⌧), ⌧ = k � Wss + 1, . . . , k,
which are of low dimension. Note that there is no replication
of computations or of data stored across computational units,
which contributes to the efficiency of the algorithm as far as
computational power and memory resources are concerned.
Not only does this design allow for very fast computations
of state estimates, but it is also suitable for the application to
large-scale networks, requiring only cheap microcontrollers as
computational units.

The local filter dynamics (10) shows that computational
unit Ti has to receive data from every computational unit

in the in-neighborhood of Si, i.e. Tj , j 2 D�
i . Thus, the

communication network can be also represented by a directed
graph, whose nodes are the computational units of each system
and the communication links are the same directed edges as
the dynamic coupling graph G. It is important to stress that
the only required communication links are between systems
with dynamic interaction, which, for the vast majority of
applications to large-scale networks, are in close proximity to
one another. For this reason, it is generally easy to establish a
wire connection for these communication links, which allows
for fast data transfer. In fact, for every iteration k, each
computational unit Ti has to receive, at the beginning of each
iteration, the control input of the previous time instant of
the systems in its in-neighborhood, i.e. uj(k�1), j 2 D�

i .
Furthermore, (10) shows that each computational unit has
to receive updated state estimates of the systems in its in-
neighborhood computed at time instant k, i.e. x̂j(⌧ �1|⌧ �
1|k), ⌧ = k � Wss + 1, . . . , k, j 2 D�

i . It amounts to
Wss communications for each iteration, which have to be
carried out synchronously, i.e. every computational unit in the
network must undergo alternated prediction-filtering steps and
updated state estimate exchanges synchronously. Although it
may seem difficult to achieve in practice, it is important to
stress that: i) the amount of information transmitted each step
is very reduced, unlike the state-of-the-art MHE designs; ii) the
communication links are restricted to pairs of systems with
dynamic coupling, which eases the implementation of a fast
and reliable data connection; and iii) the value of Wss required
to notice a significant improvement in the performance of
the estimation over state-of-the-art designs is very low. Recall
Fig. 1, which depicts the communication and storage require-
ments for an arbitrary node i of an illustrative large-scale
network with string configuration. Fig. 2 shows the flowchart
of the decentralized estimation algorithm implemented in Ti
according to the proposed MHE framework.

III. MOVING FINITE-HORIZON METHOD

Because of the sparsity constraint, the optimization prob-
lems (8) and (9) are nonconvex and finding their optimal
solution is still an open problem. To overcome this difficulty,
the optimization problem may be relaxed so that it becomes
convex, allowing for the use of well known optimization tech-
niques. Albeit optimal for the modified problem, the relaxed
solution is only an approximation to the solution of the original
problem, thus careful relaxation is necessary to ensure that the
separation between both solutions is minimal. This approach is
designated convex relaxation [39] and it has been successfully
employed in control theory [40], [41]. The goal is to find a
sequence of steady-state gains that solves (9). Nevertheless, the
MFH method is designed to solve the optimization problem
(8) with time varying sequences of gains as k!1. If the
sequence of gains and estimation error covariance converges,
then it approximates the behavior of the steady-state problem,
consisting of an approximate solution to (9).

Note that the objective function of (8) is the sum, over an
infinite window, of variances of the estimation error at time
instant k, i.e., x̂(k|k|k)� x(k). Each of these state estimates
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MHE estimation algorithm for time instant k running in Ti

Assign: x̂i(k�Wss|k�Wss|k) = x̂i(k�Wss|k�Wss|k�Wss)

Assign: ⌧ = k �Wss + 1

Broadcast: ui(k � 1) to Tj , j 2 D+
i

Receive: uj(k � 1) from Tj , j 2 D�
i

Compute: ui,D�
i
(k � 1)

Broadcast: x̂i(⌧ � 1|⌧ � 1|k) to Tj , j 2 D+
i

Receive: x̂j(⌧ � 1|⌧ � 1|k) from Tj , j 2 D�
i

Compute: x̂i(⌧ |⌧ � 1|k)

If ⌧ = k Compute: x̂i(⌧ |⌧ |k)

Assign: ⌧ = ⌧ + 1

Measure: yi(k)

Compute: x̂i(k|k|k)

Free: x̂i(k � Wss|k � Wss|k � Wss),
ui,D�

i
(k �Wss) and yi(k �Wss + 1) from Ti

Store: x̂j(k|k|k) ,ui(k � 1) and yi(k) in Ti

True

False

Fig. 2: Flowchart of the decentralized estimation algorithm
implemented in Ti according to the proposed MHE framework.

is computed making use of W prediction-filtering steps in (4),
which are initialized with the estimate x̂(k�W |k�W |k�W ).
As the window length, W , increases, an increasing number of
outputs is considered in the prediction-filtering steps, which
results in a lower dependence of x̂(k|k|k) on x̂(k�W |k�
W |k�W ). This is the principle behind the first relaxation of
(8), which consists in optimizing the accuracy of each state
estimate x̂(k|k|k) without taking into account its effect in the
performance of the future estimates x̂(k+nW |k+nW |k+
nW ), with n 2 N. According to this relaxation, (8) can be
approximated by multiple independent optimization problems

minimize
K(⌧ |k)2Rn⇥o ,

⌧2{k�W+1,...,k}

tr(P(k|k|k))

subject to K(⌧ |k)2Sparse(E),

⌧ 2 {k�W+1, . . . , k}, and (7)

(12)

k 2 N. Notice that in the limit scenario of a varying max-
imum window length W = k, the relaxation above is exact.
However, expanding the objective function of (12) as a func-
tion of the estimation error covariance boundary condition,
i.e. P(k�W |k�W |k�W ), yields a nonconvex polynomial
expression on K(⌧ |k), ⌧ = k�W +1, . . . , k. For this reason,
the optimization problem (12) is still nonconvex. Therefore,
to make use of well-known optimization techniques, a second

and last relaxation step is employed. Instead of minimizing
the sequence of gains K(⌧ |k), ⌧ = k � W + 1, . . . , k as a
whole as in (12), one can iteratively minimize each gain of the
sequence individually, while taking into account its effect on
the whole finite window. Following this relaxation principle,
the optimization problem (12) can be relaxed by iterating on
solutions to

minimize
K(⌧ |k)2Rn⇥o

tr(P(k|k|k))

subject to K(⌧ |k) 2 Sparse(E) and (7) ,
(13)

k 2 N and ⌧ 2 {k � W + 1, . . . , k}. Expanding the
objective function of the optimization problem above, one
readily concludes, after some algebraic manipulation using
(7), that, for each k and each ⌧ , it is quadratic in relation
to K(⌧ |k). Given that the sparsity constraint is also convex,
not only is the relaxed optimization problem (13) convex for
each k and each ⌧ , but it also has a closed-form solution, as
detailed in the following result.

Theorem 3.1: Define a matrix Z such that the vector
Zvec(K(⌧ |k)) contains the non-zero entries of K(⌧ |k) ac-
cording to the desired sparsity pattern. The closed-form solu-
tion of (13) is given by

vec(K(⌧ |k)) = ZT
�
Z(S(⌧ |k)⌦ (⌧ |k))ZT

��1
Z

vec
�
 (⌧ |k)P(⌧ |⌧ � 1|k)CT

�
,

(14)

where S(⌧ |k) is the innovation covariance at time instant ⌧
computed at time instant k, given by

S(⌧ |k) = CP(⌧ |⌧ � 1|k)CT +R

and
 (⌧ |k) = �T (⌧ + 1, k)�(⌧ + 1, k) , (15)

with

�(ki, kf ) =

kfY

j=ki

(In �K(j|kf )C)A , (16)

for ki  kf and �(ki, kf ) = In for ki > kf .
Proof: See the Appendix.

For an example on how to compute matrix Z for a given
sparsity pattern, see [12, Section 5]. For a given time instant
k, each time a gain K(⌧ |k) is modified, the sequence of
error covariance matrices needs to be updated, which can
be computationally expensive. Nevertheless, analysing the
closed-form solution for the computation of K(⌧ |k), given
by (14), one readily notices it only makes use of the error
covariance of instants up to ⌧ . For this reason, the gains can
be computed in reverse order, i.e. from the last time step of
the window to the first, updating the covariances when all the
gains of the window have already been computed. Repeating
this process, that is, taking turns computing the sequence
of gains backwards in time and recomputing the covariance
matrices forward in time, the sequence of gains converges to
a near-optimal solution of the optimization problem (12). This
subroutine is presented in Table I.

Remark 3.1: As pointed out in Table I, the algorithm for the
computation of the sequences of gains of the MFH method
requires a sequence of gains for its initialization. There are
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TABLE I: Subroutine for the computation of a sequence of gains for the MFH method for an arbitrary time instant k.

1) Inputs:
a) k, current time instant;
b) W , window length;
c) ✏, minimum relative improvement on the objective function of the optimization problem (12).

2) Initialization:
a) Set an initial sequence of filter gains K(⌧ |k), ⌧ = k �W + 1, ..., k, using the sequence computed in the previous

time instant if k > W or the one-step method otherwise. See Remark 3.1 for more details on the initialization.
b) Compute the resulting initialization estimation error covariance matrices P(⌧ |⌧ |k), ⌧ = k �W + 1, ..., k.

3) Do:
a) For: ⌧ = k, ..., k �W + 1

i) Recompute K(⌧ |k) using (14).
b) Recompute the estimation error covariance matrices P(⌧ |⌧ |k), ⌧ = k �W + 1, ..., k, using (7).

While: relative improvement on tr(P(k|k|k)) relative to the previous outer loop iteration is greater than ✏.
4) Return: the sequence of gains K(⌧ |k) and corresponding estimation error covariance matrices P(⌧ |⌧ |k), for ⌧ = k �

W + 1, ..., k.

plenty of approaches that can be followed for this. Since
it is not necessary that these initial gains stabilize the filter
error dynamics, null gains may be used for the initialization.
However, for unstable systems, its use may lead to numerical
problems, especially for large window lengths, since the cor-
responding initial covariance grows unbounded with time. A
second approach is to initialize the method with the sequence
of centralized gains, which can be computed very rapidly. In
fact, the use of (14) guarantees that, after the first iteration, all
the gains follow the given sparsity pattern. A third alternative
is to initialize the algorithm with a stabilizing sequence of
sparse gains provided by a fast method such as the one-step
method, put forward in [12, Section 4]. A fourth approach is
to use the sequence of gains computed for the previous time
step. In fact, if the sequence of gains, for each time instant
k, converges to a constant sequence as k ! 1, then using
this initialization, the higher k is, the lesser is the number
of required iterations for the convergence of each sequence of
gains. For this reason, for time instants k > Wss (equivalently
k > W ), this is the initialization that should be used to
allow for a significant reduction in computational load. For the
initialization period, i.e. k  Wss (equivalently k = W ), one
of the first three approaches that were presented may be used,
as the previously computed sequence of gains has a different
length.

The algorithm proposed in this paper to compute a steady-
state sequence of gains following a MHE framework is
outlined in Table II. It returns an approximation, possibly
suboptimal, to the solution of the optimization problem (9)
as the limit, within a relative separation whose order of
magnitude is set by ✏1, of an approximate, possibly sub-
optimal, solution to (8) as k ! 1. Note that, similarly to
the Luenberger formulation, the steady-state sequence of gains
can, and should, be computed offline.

For the application of the MFH algorithm to a particular
system, four parameters need to be selected: i) the initial
estimation error covariance matrix P(0|0|0); ii) the steady-

state window length, Wss; iii) the minimum relative improve-
ment on the objective function of the steady-state optimization
problem (9), ✏1; and iv) the minimum relative improvement
on the objective function of the optimization problem (12),
✏. The MFH algorithm may reach different local minima
of the steady-state optimization problem (9) for different
P(0|0|0). For that reason, for a particular steady-state window
length Wss, one aims to find one such initialization matrix
P(0|0|0) which, ideally, converges to the global minimum.
It is important to remark that the parameter P(0|0|0), used
for the initialization of the MFH algorithm, is distinct from
the estimation error covariance of the initial estimate, P0. In
fact, if a given P(0|0|0) is selected for the gain synthesis and
the MFH algorithm returns a sequence of steady-state gains
that stabilizes the dynamics of the decentralized filter, then the
estimation error covariance converges to a steady-state matrix
P1, regardless of the initial estimation error covariance of the
initial estimate, P0.

The selection of the parameters P(0|0|0) and Wss can be
conducted in one of three ways. First, if there is considerable
computational power available, as the gain computation is
carried out offline, it is possible to iterate through each window
size value up to a maximum value, applying the algorithm
to each of them for a large number of randomly generated
initial estimation error covariance matrices. Then, the pair
of parameters which yields a good compromise between
performance and window length is selected. Second, one
may select, in a first instance, the steady-state window size
which allows for a good compromise between performance
and window length for P(0|0|0) = 0n⇥n. Then, for the
previously selected window length, the MFH algorithm is run
for a large number of randomly generated initial estimation
error covariance matrices, the best of which is selected. This
approach requires significantly lower computational power,
which is particularly convenient for the application to large-
scale systems. Third, although suboptimal, the performance
obtained for P(0|0|0) = 0n⇥n and the respective steady-state
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TABLE II: MFH algorithm for the computation of a steady-state sequence of gains.

1) Initialization:
a) Select an initial covariance P(0|0|0) ⌫ 0.
b) Select a steady-state window length Wss.
c) Select stopping criteria: i) ✏1, the minimum relative improvement on the objective function of the steady-state

optimization problem (9) and ii) ✏  ✏1/10, the minimum relative improvement on the objective function of the
optimization problem (12) for the computation of each sequence of gains.

d) k = 0;
2) Do:

a) k = k + 1
b) W = min(k,Wss)
c) Call: the algorithm outlined in Table I with input arguments (k, W, ✏) to compute the sequence of gains K(⌧ |k),

and corresponding estimation error covariance matrices P(⌧ |⌧ |k), ⌧ = k �W + 1, . . . , k.
While: k  Wss or relative improvement on tr(P(k|k|k)) relative to tr(P(k � 1|k � 1|k � 1)) is greater than ✏1.

3) Return: the steady-state sequence of gains K(⌧ |k), for ⌧ = k � Wss + 1, ..., k and the corresponding steady-state
estimation error covariance matrix P(k|k|k).

window size yields identical performance to the one obtained
using the previous two approaches. Thus, a null initialization
can be simply used instead to choose the window length and
synthesize the sequence of gains. It is important to note that
all approaches are easily implemented in a parallel framework
across multiple cores. The parameter ✏1 is adjusted according
to the desired precision of the solution. Note that, depending
on the rate of convergence of the solution, if a precision of
✏? is required, it may be necessary to set ✏1 some orders of
magnitude below ✏?. Lastly, it is important to note that, since
the MFH algorithm depends on the output of the subroutine for
the computation of each sequence of gains, it is necessary that
its precision is, at least, one order of magnitude higher than
the precision selected for the steady-state problem solution
approximation. For this reason, one should select ✏ such that
✏  ✏1/10.

Remark 3.2: It is also worth noticing that a filter designed
to use a steady-state sequence of gains, as the steady-state
MHE filter presented in this paper, is not self-starting. Such
design can only be used starting from time instant k = Wss.
The state estimates for time instant prior to k = Wss ought
to be computed using a Luenberger filter whose steady-state
gain is computed using one of the state-of-the-art algorithms.

Remark 3.3: The iterative gain computation procedure
for the MFH method is based on the closed-form solution
(14), which has a computational complexity of O(|�|(no)2),
where |�| denotes the number of nonzero entries of E.
Instead of using it, the exact numeric algorithm proposed
in [42] can be, alternatively, used to compute each iteration
with a computational complexity of O(|�|3). Usually,
in decentralized control applications, |�| is given by
|�| ⇡ cn, where c 2 N is a constant. It, thus, follows
that a computational complexity of O(n3) is achieved for
each iteration, which is equal to the one of the centralized
solution. An efficient MATLAB implementation of the MFH
method can be carried out using the DECENTER toolbox. See
https://decenter2021.github.io/documentation/MHEMovingFin
iteHorizonLTI for more details.

IV. SIMULATION RESULTS

Extensive numerical simulations were carried out to assess
the performance of the proposed MHE framework and of the
MFH method. These are presented concisely in this section
due to space constraints. The unabridged simulations for sev-
eral systems are available at the aforementioned open-source
repository, which can be easily reproduced and adapted. The
performance of the solution proposed in this paper is compared
with the centralized (C) solution; state-of-the-art decentralized
Luenberger filters: i) one-step (OS) method [12, Section 4],
and ii) finite-horizon (FH) algorithm [12, Section 5]; and
the distributed MHE method PMHE1 put forward in [28],
which is a state-of-the-art distributed MHE solution whose
communication, computational, and memory requirements are
of the same magnitude as those of the solution proposed in
this work.

A large-scale network of N = 500 systems was randomly
generated, whose interconnection configuration is represented
by the digraph depicted in Fig. 3, with ni = 2 and oi =
1, i = 1, . . . , 500, and considering a fully decentralized
configuration with E = diag(1n1⇥o1 , . . . ,1nN⇥oN ). The OS
method was synthesized with ✏ = 10�5. The FH algorithm
gain was synthesized with ✏ = 10�2 and W = 100. Often
the FH algorithm does not converge to a steady-state gain,
but this synthetic network was chosen so that it is not the
case. An example of this behavior can be seen in the extensive
simulations in the aforementioned open-source repository, for
which the MFH method still converges. The MFH method
gain sequence was synthesized with ✏1 = 10�4, ✏ = ✏1/10,
and using a null estimation error covariance matrix as ini-
tialization. Table III depicts the projected performance of the
MFH method for several steady-state window sizes normalized
by the centralized performance. The value Wss = 5 was
chosen. The PMHE1 method is not guaranteed to converge
for a window size equal to the MFH method in this network,
according to [28, Theorem 1]. In the unabridged simulations in
the repository, it is shown that its error dynamics are unstable
in this synthetic network. The PMHE1 method disregards the

https://decenter2021.github.io/documentation/MHEMovingFiniteHorizonLTI/
https://decenter2021.github.io/documentation/MHEMovingFiniteHorizonLTI/
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Fig. 3: Digraph of the interconnection configuration of the
second large-scale network considered in the simulations.

TABLE III: Steady-state normalized projected performance
comparison of the MFH method for different steady-state
window sizes Wss.

Wss 2 3 4 5 6 7
tr(P1)/tr(PCent

1 ) 1.911 1.764 1.647 1.590 1.555 1.520

uncertainty associated with the dynamic couplings between
systems to allow for an implementation that resorts to local
communication exclusively. Thus, unless couplings are very
weak, it often leads to instability. Later, a second network
with weaker couplings is considered.

Fig. 4 depicts the evolution of the trace of the estimation
error covariance throughout the last iteration of the MFH
algorithm, i.e. P(⌧ |⌧ |k), ⌧ = k�Wss, . . . , k, for the last time
instant k for which a new sequence of gains is computed. First,
given that the algorithm converges, the boundary estimation
error covariance matrix P(k�W |k�W |k) = P(k�W |k�
W |k�W ) and the one at the end of the finite window achieve
the same performance. Second, recall Remark 2.1, in which
the reason for the performance improvement of the proposed
MFH algorithm over a Luenberger formulation is discussed.
That reason is evident in this plot. In fact, given that we are
exclusively concerned in minimizing P(k|k|k), the estimation
error covariance matrices corresponding to the estimates that
are computed in this recursion for the prior time instants,
P(⌧ |⌧ |k) with ⌧ = k�W +1, . . . , k�1, may achieve as poor
a performance as necessary, as long as it allows for the best
possible estimate x̂(k|k|k). Analyzing Fig. 4, one notices that
throughout the window, tr(P(⌧ |⌧ |k)) reaches four orders of
magnitude above the steady-state value. This massive loss of
performance throughout the window allows, nevertheless, for a
very good state estimate at the end of the finite window, since
the previous estimates do not compromise its performance as
it is the case when the estimation problem is formulated in a
Luenberger framework.

Fig. 5 depicts the evolution of the trace of the covariance
of the estimation error for 1000 Monte Carlo simulations. The
initial estimation error covariance of the simulations is set to
P0 = 05⇥5, i.e. null initial estimation error, as a means of

0 1 2 3 4 5

10
4

10
6

Fig. 4: Evolution of the trace of the estimation error covariance
throughout the last iteration of the MFH algorithm.
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Fig. 5: Evolution of the trace of the estimation error covariance
for 1000 Monte Carlo simulations.

contributing to the clarity of the plots. Table IV depicts the
steady-state performance of the various decentralized methods
obtained by averaging the trace of the covariance matrices ob-
tained with the Monte Carlo simulations over the last 20 time
instants, normalized by the projected centralized performance.
Not only is it possible to conclude that the MFH method
outperforms the remaining decentralized methods, but also that
the use of the second best performing method, which is the
FH algorithm, results in a penalty of 7.59% on the steady-state
performance.

Another large-scale network of N = 1000 systems was
randomly generated, with ni = 2 and oi = 1, i = 1, . . . , 1000,
and considering a fully decentralized configuration with E =
diag(1n1⇥o1 , . . . ,1nN⇥oN ). The process noise of different
systems is uncorrelated, so that the PMHE1 method can be
employed. The OS method was synthesized with ✏ = 10�4.
The FH synthesis could not be computed in a reasonable
amount of time for this network. The MFH method gain was
synthesized with ✏1 = 10�4, ✏ = ✏1/10, Wss = 2, and using

TABLE IV: Steady-state normalized performance comparison,
obtained for 1000 Monte Carlo simulations.

C OS FH MFH (Wss = 5)

tr(P1,MC)/tr(PCent
1 ) 1.001 2.129 1.719 1.596

Relative to MFH �37.3% +33.3% +7.59% –
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Fig. 6: Evolution of the norm of the estimation error.

TABLE V: Average estimation error norm for the different
decentralized methods.

C OS MFH PMHE1 PMHE1
(Wss = 2) (WPMHE1 = 2) (WPMHE1 = 5)

49.95 173.9 81.92 132.3 140.1

a null estimation error covariance matrix as initialization. The
PMHE1 method is guaranteed to converge for a window size
WPMHE1 = 2, according to [28, Theorem 1]. Alternative B
for the PMHE1 methods is chosen according to [28, Section
1] because its requirements are more comparable to those of
the MHE framework proposed in this work. Fig. 6 shows the
evolution of the norm of the estimation error for these methods
and Table V depicts the average error norm. The MFH method
outperforms the remaining decentralized methods and the use
of the second best performing method results in a penalty of
61.5% on the estimation performance. It is worth remarking
that the PMHE1 method can handle constraints on the state
variables and on the noise, which the proposed framework
cannot. As a result, the PMHE1 method cannot be synthesized
offline. Thus, to rely on local communication exclusively,
it has to disregard uncertainty associated with the dynamic
couplings between systems, which degrades performance. As
a result, although it performs better than the OS method, it
underperforms in comparison with the MHE solution proposed
herein.

V. CONCLUSION

This paper addresses the problem of designing a decen-
tralized state estimation solution for a large-scale network
of interconnected unconstrained LTI systems. The problem
is tackled in a novel MHE framework, motivated by an
attempt to increase the estimation performance in relation to
the state-of-the-art decentralized methods based on recursive
Luenberger filters. First, the proposed MHE framework has
low computational and memory requirements and requires
local communication exclusively. Second, the proposed ap-
proach achieves a significant improvement in performance in
comparison with recent Luenberger-based filtering methods.
Third, we show that a state-of-the-art distributed MHE solution
with comparable requirements underperforms in comparison

with the solution proposed herein. Fourth, it can be con-
cluded that other MHE-based decentralized methods could,
in principle, achieve the same performance of the proposed
MFH method for unconstrained systems. Nevertheless, by
taking into account state and noise bounds, they cannot be
synthesized offline, which imposes limiting constraints for
their implementation feasibility that degrade performance.
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APPENDIX

Assume, without loss of generality, that A is invertible.
Using (7) to expand the objective function of (13) as a
function of the estimation error covariance at time instant ⌧ ,
i.e. P(⌧ |⌧ |k), yields a quadratic expression on K(⌧ |k)

P(k|k|k) =�(⌧, k)P(⌧ � 1|⌧ � 1|k)�T (⌧, k)+
kX

i=⌧

�(i+ 1, k)K(i|k)RKT (i|k)�T (i+ 1, k)+

kX

i=⌧

�(i, k)A�1QA�T�T (i, k) ,

where �(ki, kf ) is defined as in (16). Taking the derivative of
the trace of P(k|k|k) with respect to K(⌧ |k) yields

@

@K(⌧ |k) tr(P(k|k)) =2�T (⌧ + 1, k)�(⌧ + 1, k)
�
K(⌧ |k)S(⌧ |k)�P(⌧ |⌧ � 1|k)CT

�
.

Let li denote a column vector whose entries are all set to zero
except for the i-th one, which is set to 1. Then the optimal
solutions is given by
8
><

>:

lTi  (⌧ |k)K(⌧ |k)S(⌧ |k)lj�
lTi  (⌧ |k)P(⌧ |⌧�1|k)CT lj = 0, [E]ij 6= 0

lTi K(⌧ |k)lj = 0, [E]ij = 0,

(17)

where  (⌧ |k) is defined as in (15). For each k and each ⌧ ,
(17) is identical to the equation that arises in the derivation
of the finite-horizon method [12, Appendix B]. Therefore, the
same techniques may be employed to solve (17). The solution
of this optimization problem is, thus, given by (14).
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of Lisbon (ULisboa), Portugal. He has received
four academic excellence diplomas, endowed
by IST, and four outstanding academic perfor-
mance awards, endowed by ULisboa. He was
also awarded an honorable mention in the 48th
International Physics Olympiad. Since 2019 he
is a member of the research team of the DE-
CENTER project, funded by the Portuguese Na-

tional Science Foundation.

Pedro Batista (SM’18) received the Licen-
ciatura degree in Electrical and Computer Engi-
neering, in 2005, and the PhD degree, in 2010,
both from the Instituto Superior Técnico (IST),
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