63rd IEEE Conference on Decision and Control

Fair Artificial Currency Incentives in Repeated Weighted Congestion Games: Equity vs. Equality

Leonardo Pedroso¹ Andrea Agazzi² W.P.M.H. (Maurice) Heemels¹ Mauro Salazar¹

 $^{1}\mathrm{Control}$ Systems Technology section, Eindhoven University of Technology, The Netherlands

²Mathematics Department, Università di Pisa, Pisa, Italy

Introduction: The Rise of Sharing Economies

Introduction: The Rise of Sharing Economies

Design allocation rules/incentives for maximum resource utility

Pedroso, Agazzi, Heemels and Salazar

Fair AC Incentives: Equity vs. Equalit

63rd IEEE CDC

2/18

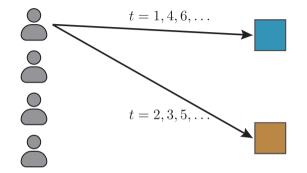
Pedroso, Agazzi, Heemels and Salazar

Fair AC Incentives: Equity vs. Equalit

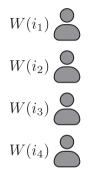
63rd IEEE CDC

イロト 不得 トイヨト イヨト

3/18



イロト 不得 トイヨト イヨト

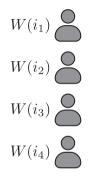


Pedroso, Agazzi, Heemels and Salazar

Fair AC Incentives: Equity vs. Equalit

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 63rd IEEE CDC

3/18



$$l_2(w_2) = 1$$

Pedroso, Agazzi, Heemels and Salazar

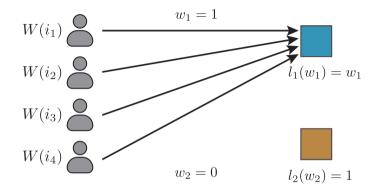
Fair AC Incentives: Equity vs. Equalit

63rd IEEE CDC

イロト イポト イヨト イヨト

3/18

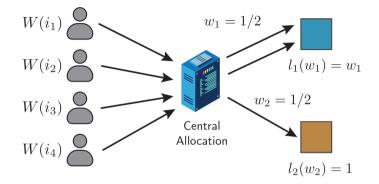
Utility : $C(w) = w_1 l_1(w_1) + w_2 l_2(w_2)$



Utility :
$$C(w) = w_1 l_1(w_1) + w_2 l_2(w_2)$$

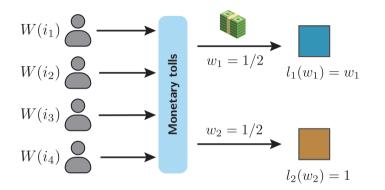
No incentives : $C(w) = 1 \cdot 1 + 0 \cdot 1 = 1$
Optimum : $C(w) = 0.5 \cdot 0.5 + 0.5 \cdot 1 = 3/4$

< ロ > < 同 > < 回 > < 回 >

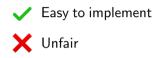


Utility : $C(w) = w_1 l_1(w_1) + w_2 l_2(w_2)$ No incentives : $C(w) = 1 \cdot 1 + 0 \cdot 1 = 1$ Optimum : $C(w) = 0.5 \cdot 0.5 + 0.5 \cdot 1 = 3/4$

• • = • • = •

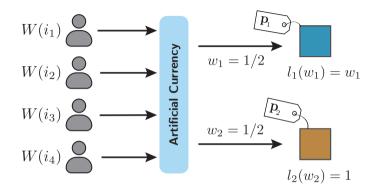


Monetary Tolls

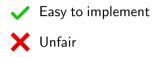


Utility : $C(w) = w_1 l_1(w_1) + w_2 l_2(w_2)$ No incentives : $C(w) = 1 \cdot 1 + 0 \cdot 1 = 1$ Optimum : $C(w) = 0.5 \cdot 0.5 + 0.5 \cdot 1 = 3/4$

• • = • • = •



Monetary Tolls



Artificial Currency

- ✓ AC Payments
- 🗸 Fair
- 🗸 Turn-taking

Utility : $C(w) = w_1 l_1(w_1) + w_2 l_2(w_2)$ No incentives : $C(w) = 1 \cdot 1 + 0 \cdot 1 = 1$ Optimum : $C(w) = 0.5 \cdot 0.5 + 0.5 \cdot 1 = 3/4$

イロト 不得下 イヨト イヨト

3/18

Introduction: State-of-the-art

Design AC incentives that are **societally-optimal** and **maximize fairness**

Introduction: State-of-the-art

Design AC incentives that are **societally-optimal** and **maximize fairness**

Artificial Currency Incentives:

- Bidding (Censi et al., 2019), (Elokda et al., 2023)
- Fixed-prices (Salazar et al., 2021), (Pedroso et al., 2023)

Introduction: State-of-the-art

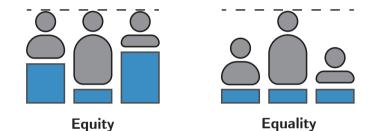
Design AC incentives that are **societally-optimal** and **maximize fairness**

Artificial Currency Incentives:

- Bidding (Censi et al., 2019), (Elokda et al., 2023)
- Fixed-prices (Salazar et al., 2021), (Pedroso et al., 2023)

Missing: Formal **definition** of **fairness metrics Missing**: AC **design** maximizing **fairness metrics**

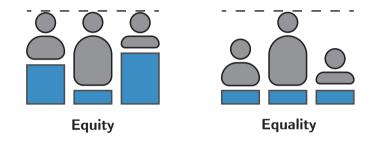
Introduction: Equity vs. Equality



63rd IEEE CDC

イロト イポト イヨト イヨト

Introduction: Equity vs. Equality



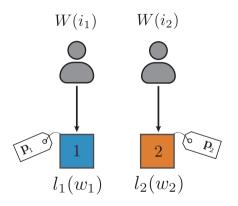
Design for equity vs. Design for equality

Fair AC Incentives: Equity vs. Equalit

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Problem Statement: Setting

- ► Players: $i \in \Omega = [0, 1]$
- ▶ Resources: $r \in \mathcal{R} = \{1, 2\}$
- ▶ Participation probability: $P_{\rm go}$

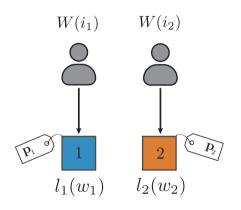


▶ < ⊒ ▶

Problem Statement: Setting

- ► Players: $i \in \Omega = [0, 1]$
- ▶ Resources: $r \in \mathcal{R} = \{1, 2\}$
- Participation probability: $P_{\rm go}$
- AC level at time t: K_t(i) ≥ 0
 Resource prices: p₁(w), p₂(w)

$$egin{aligned} \mathcal{K}_{t+1}(i) = egin{cases} \mathcal{K}_t(i) - \mathbf{p}_1(\mathcal{W}(i)), & ext{chooses 1} \ \mathcal{K}_t(i) - \mathbf{p}_2(\mathcal{W}(i)), & ext{chooses 2} \ \mathcal{K}_t(i), & ext{no participation at t} \end{aligned}$$



▶ < ⊒ ▶

Problem Statement: Setting

- ► Players: $i \in \Omega = [0, 1]$
- Resources: $r \in \mathcal{R} = \{1, 2\}$
- Participation probability: $P_{\rm go}$
- AC level at time t: K_t(i) ≥ 0
 Resource prices: p₁(w), p₂(w)

$$egin{aligned} \mathcal{K}_{t+1}(i) = egin{cases} \mathcal{K}_t(i) - \mathbf{p}_1(\mathcal{W}(i)), & ext{chooses 1} \ \mathcal{K}_t(i) - \mathbf{p}_2(\mathcal{W}(i)), & ext{chooses 2} \ \mathcal{K}_t(i), & ext{no participation at t} \end{aligned}$$



Problem Statement: Player Decision Model

Making a **decision** at time t a player i ponders:

- ▶ The **perceived discomfort** at time t: $U_t(i)I_r(w_r)$
- Future decision constraints due to future AC level

< ∃→

Problem Statement: Player Decision Model

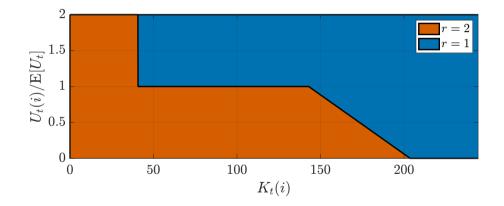
Making a **decision** at time t a player i ponders:

- ▶ The **perceived discomfort** at time t: $U_t(i)I_r(w_r)$
- Future decision constraints due to future AC level

Augmented cost :
$$c'(i) = \min_{\bar{\mathbf{y}} \in \mathbb{R}^2_{\geq 0}} U_t(i) I_r(w_r) + \mathbb{E}[U_t] P_{go} T \bar{\mathbf{y}}^\top \mathbf{I}(w)$$

s.t. $\mathbf{1}^\top \bar{\mathbf{y}} = 1$
 $K_t(i) - \mathbf{p}_r(W(i)) - P_{go} T \bar{\mathbf{y}}^\top \mathbf{p}(W(i)) \ge 0$
Decision : $A_t(i) \in \operatorname{argmin}_{r \in \mathcal{R}} c^r(i)$

Problem Statement: Player Decision Model



э

Image: A math a math

Problem Statement: Efficiency

Definition (Nash Equilibrium) $A_t: \Omega \to \{0, 1, 2\}$ is a NE if $\forall i \forall a$ $c_{\mathbf{w}^A t}^r(i) \leq c_{\mathbf{w}^A t}^a(i)$

< ロ > < 同 > < 回 > < 回 >

Problem Statement: Efficiency

Definition (Nash Equilibrium) $A_t : \Omega \rightarrow \{0, 1, 2\}$ is a NE if $\forall i \forall a$

 $c^{r}_{\mathbf{w}^{A_{t}}}(i) \leq c^{a}_{\mathbf{w}^{A_{t}}}(i)$

Societal Cost: $C(\mathbf{w}^{A_t})$

Definition (Price of Anarchy)

$$\operatorname{PoA}_{t} := \frac{\max_{A_{t} \in \mathcal{A}_{t}^{NE}} C(\mathbf{w}^{A_{t}})}{\min_{A_{t}} C(\mathbf{w}^{A_{t}})} = \frac{\operatorname{worst NE equilibrium}}{\operatorname{societal optimum}} \quad (1 \text{ at societal optimum})$$

э

イロト 不得下 イヨト イヨト

Problem Statement: Fairness

Average endured latency of player *i* until *t*:

$$L_t(i) = \underbrace{\frac{1}{N_t(i)}}_{\substack{\text{Number of times } i\\ \text{participated until } t}} \sum_{\substack{\tau=0\\ A_\tau(i)\neq 0}}^t \underbrace{I_{A_\tau(i)}(\mathbf{w}^{A_\tau})}_{\substack{\text{latency of } i\\ \text{at time } \tau}}$$

63rd IEEE CDC

→ < ∃ →</p>

Problem Statement: Fairness

Average endured latency of player *i* until *t*:

$$L_t(i) = \underbrace{\frac{1}{N_t(i)}}_{\substack{\text{Number of times } i \\ \text{participated until } t}} \sum_{\substack{\tau=0 \\ A_\tau(i) \neq 0}}^t \underbrace{I_{A_\tau(i)}(\mathbf{w}^{A_\tau})}_{\substack{\text{latency of } i \\ \text{at time } \tau}}$$

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Problem Statement: Design Problem

Problem (AC Incentive Design Problem)

Design $\mathbf{p}_1(w)$, $\mathbf{p}_2(w)$ such that

▶
$$PoA_t \rightarrow 1$$

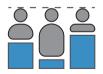
•
$$\operatorname{InEqt}_t \to 0 \text{ or } \operatorname{InEql}_t \to 0$$

< ロ > < 同 > < 回 > < 回 >

11/18

Incentive Design: Equity

Equity: All players endure the same latency on average irrespective of their weight ⇒ weight-independent prices



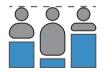
- E 63rd IEEE CDC

▶ < ⊒ ▶

Incentive Design: Equity

Equity: All players endure the same latency on average irrespective of their weight \implies weight-independent prices

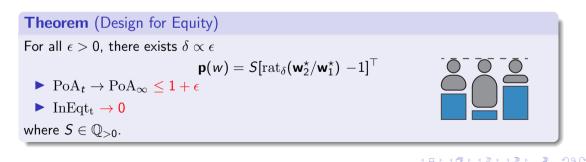
Efficiency: Global AC level constant at SO, i.e., $\lim_{t\to\infty} \mathbb{E}[K_{t+1}] - \mathbb{E}[K_t] = 0$ $\implies \mathbf{p}^\top \mathbf{w}^* = 0$



Incentive Design: Equity

Equity: All players endure the same latency on average irrespective of their weight \implies weight-independent prices

Efficiency: Global AC level constant at SO, i.e., $\lim_{t\to\infty} \mathbb{E}[K_{t+1}] - \mathbb{E}[K_t] = 0$ $\implies \mathbf{p}^\top \mathbf{w}^* = 0$



Incentive Design: Equality

Theorem (Design for equality) For all $\epsilon > 0$, there exists $\delta \propto \epsilon$, $\delta_1 \propto \epsilon$

$$\mathbf{p}(w) = egin{cases} S\left[ext{rat}_{\delta}\left(rac{n_2(w, heta^{\star})}{n_1(w, heta^{\star})}
ight) & -1
ight]^{ op}, & rac{w}{ heta^{\star}} \leq 1 \ S ext{rat}_{\delta}\left(rac{\mathbf{w}^{\star}_2}{\mathbf{w}^{\star}_1}
ight) \left[1 & - ext{rat}_{\delta}\left(rac{n_1(w, heta^{\star})}{n_2(w, heta^{\star})}
ight)
ight]^{ op}, & rac{w}{ heta^{\star}} > 1, \end{cases}$$

イロト イヨト イヨト

Incentive Design: Equality

Theorem (Design for equality) For all $\epsilon > 0$, there exists $\delta \propto \epsilon$, $\delta_1 \propto \epsilon$

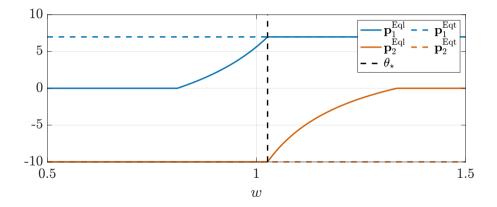
$$\mathbf{p}(w) = egin{cases} egin{aligned} S\left[ext{rat}_{\delta}\left(rac{n_{2}(w, heta^{\star})}{n_{1}(w, heta^{\star})}
ight) & -1
ight]^{ op}, & rac{w}{ heta^{\star}} \leq 1 \ S ext{rat}_{\delta}\left(rac{\mathbf{w}_{2}^{\star}}{\mathbf{w}_{1}^{\star}}
ight)\left[1 & - ext{rat}_{\delta}\left(rac{n_{1}(w, heta^{\star})}{n_{2}(w, heta^{\star})}
ight)
ight]^{ op}, & rac{w}{ heta^{\star}} > 1, \end{aligned}$$

But: It may not be possible to achieve perfect equality

Pedroso, Agazzi, Heemels and Salazar

Fair AC Incentives: Equity vs. Equality

Results: Incentive Design

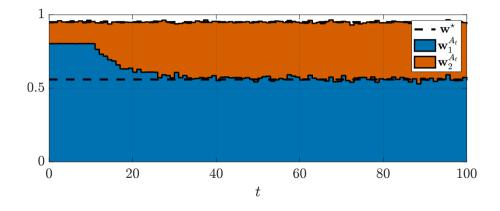


Pedroso, Agazzi, Heemels and Salazar	Fair AC Incentives: Equity vs. Equality	63rd IEEE CDC	14 / 18

A □ > A □ > A □ > A □ > A

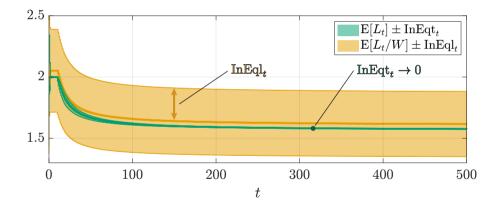
э.

Results: Aggregate decision



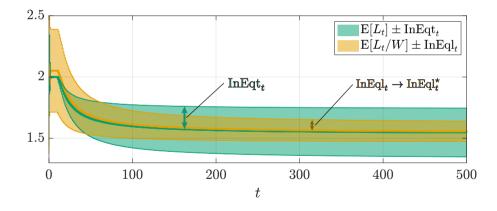
63rd IEEE CDC

Results: Design for Equity



< □ > < ⊡ > < ⊡ > < ⊇ > < ⊇ >
 63rd IEEE CDC

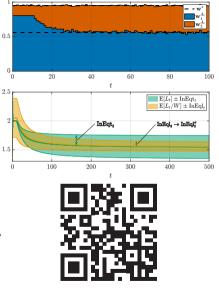
Results: Design for Equality



4 □ > 4 @ > 4 ≧ > 4 ≧ > 63rd IEEE CDC

Conclusion

- ► Fair AC incentive scheme
- Formal definition of equality and equity
- AC incentive design for equity/equality
- **Societal-optimum** is achieved
- Always possible to achieve perfect equity
- May be impossible to achieve perfect equality



http://fish-tue.github.io