62nd IEEE Conference on Decision and Control

Urgency-aware Routing in Single Origin-destination Itineraries through Artificial Currencies

Leonardo Pedroso¹ W.P.M.H. (Maurice) Heemels¹ Mauro Salazar¹

¹Control Systems Technology section, Eindhoven University of Technology, The Netherlands

Introduction

Motivation

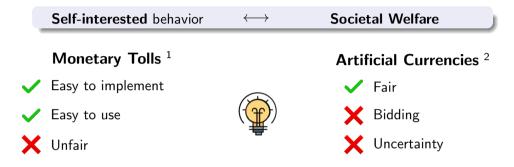
Figure 1: 69 people in bus, bikes, and cars. (Cycling Promotion Fund, 9th September 2012 [C.P.F., 2012])

Pedroso, Heemels and Salazar

Jrgency-aware Routing through Artificial Currencies

Introduction Opportunity

- Vehicle autonomy
- Car sharing
- Public transport
- Connectivity


Figure 2: New opportunities. [Raysonho CC0,Dullu CC BY-SA 4.0]

Centralized controlled intermodal mobility \rightarrow system's optimum performance!^{1,2}

¹Salazar, Rossi, Schiffer, Onder, Pavone. "On the interaction between autonomous mobility-on-demand and public transportation systems." ITSC, 2018. [Salazar et al., 2018]

²Wollenstein-Betech, Salazar, *et al.*. "Routing and rebalancing intermodal autonomous mobility-on-demand systems in mixed traffic." IEEE T-ITS, 2021. [Wollenstein-Betech et al., 2021]

Literature Review

Idea: Bridge the gap³

Payment-transaction of artificial currency \rightarrow urgency-aware system's optimum

¹[Pigou, 1920, Morrison, 1986, Bergendorff et al., 1997, Fleischer et al., 2004, Paccagnan et al., 2019] ²[Prendergast, 2016, Gorokh et al., 2019, Censi et al., 2019, Elokda et al., 2022]

Pedroso, Heemels and Salazar

Urgency-aware Routing through Artificial Currencies

Repeated game-framework

User choice:
$$\mathbf{y}^{i}(t) \in \{0,1\}^{n}$$

Traveling probability: $P_{\rm go}$

Each arc has a price:

$$k^i(t+1) = k^i(t) - \mathbf{p}^\top \mathbf{y}^i(t)$$

Aggregate flows of *M* users:

$$\mathbf{x}(t) = rac{1}{M} \sum_i \mathbf{y}^i(t)$$

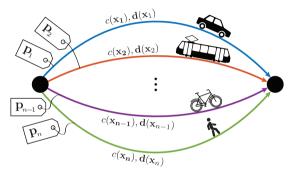
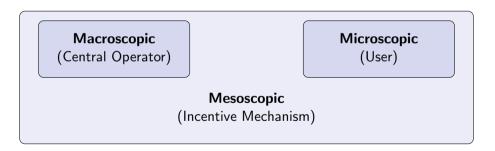


Figure 3: Parallel-arc network.


Self-interested at a cost

k l

Altruistic for a reward

Three-level Analysis

Three-level Analysis

Three-level Analysis: Macroscopic

Social cost of arc
$$j$$
: $\mathbf{c}_j(\mathbf{x}_j)$

Minimize overall social cost: $\mathbf{c}^{\top}\mathbf{x}$

Problem (Central Operator's Problem)

The central operator aims at routing customers so that the aggregate flows are

$$\begin{aligned} \mathbf{x}^{\star} \in \arg\min_{\mathbf{x}\in[0,1]^n} \mathbf{c}(\mathbf{x})^{\top} \mathbf{x} \\ \text{s.t.} \quad \mathbf{1}^{\top} \mathbf{x} = P_{\text{go}}. \end{aligned}$$

Three-level Analysis: Microscopic

Discomfort of arc j: $\mathbf{d}_j(\mathbf{x}_j)$

Daily **sensitivity** to discomfort: s^i

Ø

Min. daily perceived discomfort + average future discomfort over T days

Problem (Individual User's Problem)

A traveling user with Karma level $k \ge 0$, reference k_{ref} , and sensitivity s will choose his/her route as \mathbf{y}^* resulting from

$$\begin{aligned} (\mathbf{y}^{\star}, \bar{\mathbf{y}}^{\star}) &\in \operatorname*{argmin}_{\mathbf{y} \in \mathcal{Y}, \ \bar{\mathbf{y}} \in \bar{\mathcal{Y}}} s \, \mathbf{d}(\mathbf{x})^{\top} \mathbf{y} + T \, \bar{s} \, \mathbf{d}(\mathbf{x})^{\top} \bar{\mathbf{y}} \\ \text{s.t.} \ k - \mathbf{p}^{\top} \mathbf{y} - T \mathbf{p}^{\top} \bar{\mathbf{y}} \ge 0 \\ \mathbf{p}^{\top} \mathbf{y} \le k, \end{aligned}$$

Three-level Analysis: Mesoscopic

Ø

Infinite-user population: $M \to \infty$

Users achieve daily Wardrop Equilibrium (WE): $\mathbf{x}^{WE}(t)$

Design **prices p**

Problem (Pricing Problem)

Given a desired system optimum \mathbf{x}^{\star} , select $\mathbf{p} \in \mathbb{R}^{n}$ so that

$$\lim_{t\to\infty} \mathbf{x}^{\mathrm{WE}}(t) = \mathbf{x}^{\star}.$$

Best-response strategy Closed-form Solution

Theorem (User's Best Response Strategy)

An **optimal response strategy** of a with Karma k, sensitivity s, and Karma reference k_{ref} is $\mathbf{y}^* = \mathbf{e}_{\mathbf{j}^*}$ iff $\bar{\alpha}_{\mathbf{i}} \ge \alpha_{\mathbf{i}} = 2\mathbf{n}\mathbf{d}$ or $\mathbf{i} \le s/\bar{s} \le \alpha_{\mathbf{i}}$

$$ar{\gamma}_{j^\star} \geq \underline{\gamma}_{j^\star}$$
 and $\gamma_{j^\star} \leq s/ar{s} \leq \gamma_{j^\star-1}$

Best-response strategy

Closed-form Solution

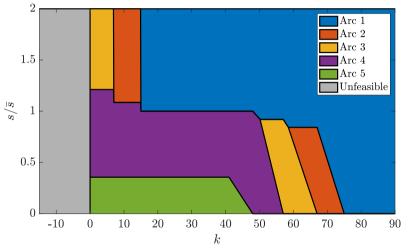


Figure 4: Decision landscape of individual user's problem.

Pedroso, Heemels and Salazar

Urgency-aware Routing through Artificial Currencie

Pricing Design Problem

Total Karma remains constant:
$$\mathbf{p}^{\top}\mathbf{x}^{\star} = \mathbf{0}$$

 \mathbf{x}^{\star}

Much more intricate

Pedroso, Heemels and Salazar

Urgency-aware Routing through Artificial Currencies

¹Salazar, Paccagnan, Agazzi, Heemels. "Urgency-aware optimal routing in repeated games through artificial currencies." European Journal of Control 62 (2021). [Salazar et al., 2021]

Pricing Design Problem: n arcs

Markov chain

- ▶ $P(j^*|k^i, \mathbf{p}, \mathbf{x}^*)$ from the **best response strategy**
- Stationary Karma distribution $\pi_{\infty}(\mathbf{p}, \mathbf{x}^{\star})$

Aggregate of Markov chains

$$\mathbf{x}_j^{\star} = \sum_{k=k_{\min}}^{k_{\max}} \mathrm{P}(j^{\star} = j | k, \mathbf{p}, \mathbf{x}^{\star}) [\pi_{\infty}(\mathbf{p}, \mathbf{x}^{\star})]_k, \quad j = 1, \dots, n$$

Challenge for n > 2

- The support of the chain depends on p
- Gradient-free optimization

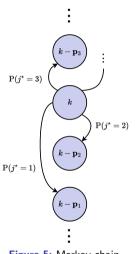
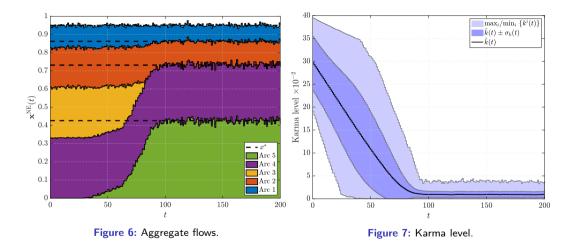
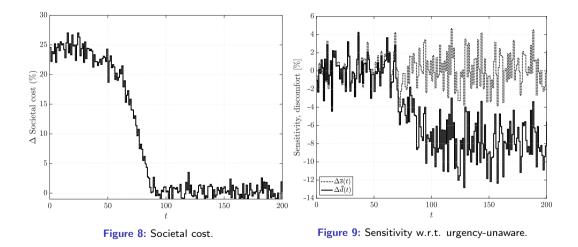




Figure 5: Markov chain.

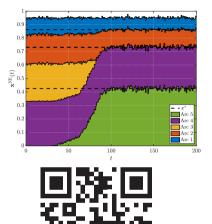
Numerical Results

Numerical Results

Conclusion

Incentive scheme: fair and urgency-aware

Solution for the user's best response strategy


Pricing design procedure for *n* arcs

of Aggregate decision achieves system's optimum

8% **improvement** w.r.t. urgency-unaware policy

http://fish-tue.github.io

References I

Bergendorff, P., Hearn, D. W., and Ramana, M. V. (1997).

Congestion toll pricing of traffic networks. *Network Optimization*, pages 51–71.

Censi, A., Bolognani, S., Zilly, J. G., Mousavi, S. S., and Frazzoli, E. (2019).

Today me, tomorrow thee: Efficient resource allocation in competitive settings using karma games. In Proc. IEEE Int. Conf. on Intelligent Transportation Systems.

C.P.F. (2012).

Cycling promotion fund media release (http://www.cyclingpromotion.com.au/content/view/566/9/).

Dllu.

CC BY-SA 4.0 jhttps://creativecommons.org/licenses/by-sa/4.0¿, via Wikimedia Commons.

Elokda, E., Cenedese, C., Zhang, K., Lygeros, J., and Dörfler, F. (2022).

Carma: Fair and efficient bottleneck congestion management with karma. arXiv preprint arXiv:2208.07113.

Fleischer, L., Jain, K., and Mahdian, M. (2004).

Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In IEEE Symp. on Foundations of Computer Science.

Gorokh, A., Banerjee, S., and Iyer, K. (2019).

From monetary to non-monetary mechanism design via artificial currencies. Available at SSRN 2964082.

References II

Morrison, S. A. (1986).

A survey of road pricing. Transportation Research Part A: Policy and Practice, 20(2):87–97.

Paccagnan, D., Chandan, R., Ferguson, B. L., and Marden, J. R. (2019).

Incentivizing efficient use of shared infrastructure: Optimal tolls in congestion games. arXiv preprint arXiv:1911.09806.

Pigou, A. C. (1920).

The Economics of Welfare. Macmillan.

Prendergast, C. (2016).

The allocation of food to food banks. EAI Endorsed Trans. Serious Games, 3(10).

Raysonho.

Open Grid Scheduler / Grid Engine, CC0, via Wikimedia Commons https://commons.wikimedia.org/wiki/File:BikeShareTorontoTD.jpg.

Salazar, M., Paccagnan, D., Agazzi, A., and Heemels, W. M. (2021).

Urgency-aware optimal routing in repeated games through artificial currencies. *European Journal of Control*, 62:22–32.

Salazar, M., Rossi, F., Schiffer, M., Onder, C. H., and Pavone, M. (2018).

On the interaction between autonomous mobility-on-demand and public transportation systems. In 2018 21st international conference on intelligent transportation systems (ITSC), pages 2262–2269. IEEE.

References III

Wollenstein-Betech, S., Salazar, M., Houshmand, A., Pavone, M., Paschalidis, I. C., and Cassandras, C. G. (2021). Routing and rebalancing intermodal autonomous mobility-on-demand systems in mixed traffic. *IEEE Transactions on Intelligent Transportation Systems*, 23(8):12263–12275.